Using 3D CNNs on high resolution medical volumes is very computationally demanding, especially for large datasets like the UK Biobank which aims to scan 100,000 subjects. Here we demonstrate that using 2D CNNs on a few 2D projections (representing mean and standard deviation across axial, sagittal and coronal slices) of the 3D volumes leads to reasonable test accuracy when predicting the age from brain volumes. Using our approach, one training epoch with 20,324 subjects takes 40 - 70 seconds using a single GPU, which is almost 100 times faster compared to a small 3D CNN. These results are important for researchers who do not have access to expensive GPU hardware for 3D CNNs.
translated by 谷歌翻译
Large annotated datasets are required to train segmentation networks. In medical imaging, it is often difficult, time consuming and expensive to create such datasets, and it may also be difficult to share these datasets with other researchers. Different AI models can today generate very realistic synthetic images, which can potentially be openly shared as they do not belong to specific persons. However, recent work has shown that using synthetic images for training deep networks often leads to worse performance compared to using real images. Here we demonstrate that using synthetic images and annotations from an ensemble of 10 GANs, instead of from a single GAN, increases the Dice score on real test images with 4.7 % to 14.0 % on specific classes.
translated by 谷歌翻译
在对光学相干断层扫描(OCT)数据进行深度学习的应用时,通常是使用源自体积数据的2D图像训练分类网络。鉴于OCT系统的千分尺分辨率,在可见的结构和噪声中,连续图像通常非常相似。因此,不适当的数据拆分可能会导致训练和测试集之间的重叠,其中很大一部分文献忽略了这一方面。在这项研究中,使用三个OCT开放式访问数据集,Kermany's和Srinivasan的Ophthalmology数据集以及AIIMS乳房组织数据集证明了三个分类任务的数据集对模型评估的影响。结果表明,分类性能在MATTHEWS相关系数(准确性:5%至30%)方面膨胀了0.07,对于在数据集中测试的模型不当,突出了数据集处理对模型评估的相当大影响。这项研究旨在提高人们对数据集分裂的重要性的认识,因为在对OCT数据上实施深度学习方面的研究兴趣增加。
translated by 谷歌翻译
Supervised Question Answering systems (QA systems) rely on domain-specific human-labeled data for training. Unsupervised QA systems generate their own question-answer training pairs, typically using secondary knowledge sources to achieve this outcome. Our approach (called PIE-QG) uses Open Information Extraction (OpenIE) to generate synthetic training questions from paraphrased passages and uses the question-answer pairs as training data for a language model for a state-of-the-art QA system based on BERT. Triples in the form of <subject, predicate, object> are extracted from each passage, and questions are formed with subjects (or objects) and predicates while objects (or subjects) are considered as answers. Experimenting on five extractive QA datasets demonstrates that our technique achieves on-par performance with existing state-of-the-art QA systems with the benefit of being trained on an order of magnitude fewer documents and without any recourse to external reference data sources.
translated by 谷歌翻译
Riemannian geometry provides powerful tools to explore the latent space of generative models while preserving the inherent structure of the data manifold. Lengths, energies and volume measures can be derived from a pullback metric, defined through the immersion that maps the latent space to the data space. With this in mind, most generative models are stochastic, and so is the pullback metric. Manipulating stochastic objects is strenuous in practice. In order to perform operations such as interpolations, or measuring the distance between data points, we need a deterministic approximation of the pullback metric. In this work, we are defining a new metric as the expected length derived from the stochastic pullback metric. We show this metric is Finslerian, and we compare it with the expected pullback metric. In high dimensions, we show that the metrics converge to each other at a rate of $\mathcal{O}\left(\frac{1}{D}\right)$.
translated by 谷歌翻译
The distributed representation of symbols is one of the key technologies in machine learning systems today, playing a pivotal role in modern natural language processing. Traditional word embeddings associate a separate vector with each word. While this approach is simple and leads to good performance, it requires a lot of memory for representing a large vocabulary. To reduce the memory footprint, the default embedding layer in spaCy is a hash embeddings layer. It is a stochastic approximation of traditional embeddings that provides unique vectors for a large number of words without explicitly storing a separate vector for each of them. To be able to compute meaningful representations for both known and unknown words, hash embeddings represent each word as a summary of the normalized word form, subword information and word shape. Together, these features produce a multi-embedding of a word. In this technical report we lay out a bit of history and introduce the embedding methods in spaCy in detail. Second, we critically evaluate the hash embedding architecture with multi-embeddings on Named Entity Recognition datasets from a variety of domains and languages. The experiments validate most key design choices behind spaCy's embedders, but we also uncover a few surprising results.
translated by 谷歌翻译
Recent successes of massively overparameterized models have inspired a new line of work investigating the underlying conditions that enable overparameterized models to generalize well. This paper considers a framework where the possibly overparametrized model includes fake features, i.e., features that are present in the model but not in the data. We present a non-asymptotic high-probability bound on the generalization error of the ridge regression problem under the model misspecification of having fake features. Our high-probability results characterize the interplay between the implicit regularization provided by the fake features and the explicit regularization provided by the ridge parameter. We observe that fake features may improve the generalization error, even though they are irrelevant to the data.
translated by 谷歌翻译
We focus on the continual learning problem where the tasks arrive sequentially and the aim is to perform well on the newly arrived task without performance degradation on the previously seen tasks. In contrast to the continual learning literature focusing on the centralized setting, we investigate the distributed estimation framework. We consider the well-established distributed learning algorithm \cocoa{}. We derive closed form expressions for the iterations for the overparametrized case. We illustrate the convergence and the error performance of the algorithm based on the over/under-parametrization of the problem. Our results show that depending on the problem dimensions and data generation assumptions, \cocoa{} can perform continual learning over a sequence of tasks, i.e., it can learn a new task without forgetting previously learned tasks, with access only to one task at a time.
translated by 谷歌翻译
Recent work shows that the expressive power of Graph Neural Networks (GNNs) in distinguishing non-isomorphic graphs is exactly the same as that of the Weisfeiler-Lehman (WL) graph test. In particular, they show that the WL test can be simulated by GNNs. However, those simulations involve neural networks for the 'combine' function of size polynomial or even exponential in the number of graph nodes $n$, as well as feature vectors of length linear in $n$. We present an improved simulation of the WL test on GNNs with \emph{exponentially} lower complexity. In particular, the neural network implementing the combine function in each node has only a polylogarithmic number of parameters in $n$, and the feature vectors exchanged by the nodes of GNN consists of only $O(\log n)$ bits. We also give logarithmic lower bounds for the feature vector length and the size of the neural networks, showing the (near)-optimality of our construction.
translated by 谷歌翻译
刚性对象的6D姿势的估计是计算机视觉中的一个基本问题。传统上,姿势估计与确定单一最佳估计有关。但是,单个估计无法表达视觉歧义,在许多情况下,由于对象对称或识别特征的阻塞,这在许多情况下是不可避免的。无法说明姿势的歧义可能会导致后续方法的失败,这是在失败成本高时无法接受的。完全姿势分布的估计与单个估计相反,非常适合表达姿势不确定性。由此激励,我们提出了一种新颖的姿势分布估计方法。对象姿势上概率分布的隐式公式来自对象的中间表示作为一组关键点。这样可以确保姿势分布估计值具有很高的解释性。此外,我们的方法基于保守近似,这导致可靠的估计。该方法已被评估在YCB-V和T-less数据集上旋转分布估计的任务,并在所有对象上可靠地执行。
translated by 谷歌翻译